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This short article provides detailed descriptions of custom-made and commercially available hand-held drilling gear and options for 
water-flushing units specifically designed to obtained good-quality core material from speleothems even in remote cave regions. 
We use small-diameter (6-7 mm) diamond drill-core bits to obtain aliquots of calcite (as little as a few hundred milligrams) from the 
interior of the basal part of in-situ stalagmites. These small cores are used to date the onset of stalagmite growth and occasionally 
to obtain other compositional information. Larger diameter drill-core bits produce cores 25-32 mm in diameter and up to 1.3 m in 
length which reveal internal structures and provide axial transects for chemical and isotope analysis and material for preparation of 
thin sections. This system has been successfully employed to sample flowstone and thick stalagmites. Given the growing interest in 
speleothem as archives of past environmental change, careful sample selection is primordial to keep the impact of sampling in these 
unique environments at a minimum. Low-invasive drilling is an essential technique and maximizes the amount of information gained. 
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Scientific drilling of speleothems – a technical note

INTRODUCTION
Recent years have seen a strongly increasing 

interest of geoscientists in caves in general and 
speleothems in particular. Although it was recognized 
half a century ago that speleothems may provide useful 
palaeoenvironmental information (e.g., Broecker et al., 
1960; Hendy & Wilson, 1968) it was only during recent 
decades that data obtained from these deposits have 
gained wider acceptance in the scientific community. 
During the last ten years palaeoenvironmental 
research has boomed and speleothem studies have 
become popular among scientists trying to reconstruct 
past climate change on a range of timescales. This 
development was fuelled by improved analytical 
techniques and a number of high-impact publications 
demonstrating the enormous potential of stalagmites 
(and less commonly flowstone) as high-fidelity climate 
archives (e.g., Wang et al., 2001) that can be precisely 
dated and correlated with instrumental and proxy 
records.
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The surge in speleothem research has triggered 
a wave of interest in cave environments as it is now 
widely recognized that speleothem proxy data need to 
be understood in the context of the local cave setting 
to derive robust palaeoclimatic information. It is also 
important that that records should be replicated 
within a given cave system, i.e. temporally overlapping 
speleothems are required (e.g., Dorale & Liu, 2009), 
and as a result pressure is high for scientists to obtain 
a series of stalagmites from a given cave. Speleothem 
climate proxy research necessitates that a whole 
stalagmite is permanently removed from the cave and 
to make things worse, the best suited growth forms 
for palaeoclimatic studies are the aesthetic, equal-
diameter (candle-stick) stalagmites (e.g., Kaufmann, 
2003; Fairchild et al., 2006; Dreybrodt & Romanov, 
2008). Furthermore, speleothem science relies on a 
measure of good luck in that the samples selected and 
removed are suitable for the intended analyses and 
scientific objectives. They might have high porosity, 
growth hiatuses, high abundance of detritus, or be 
composed of calcite that is not suitable for U series 
dating, e.g. because of diagenetic alteration. 

Caves are unique environments protected by 
law in most countries. Removing stalagmites always 
represents a serious, irreversible impact and should 
be carefully evaluated and coordinated with local 
authorities and speleologists. A way to minimise the 
impact on the cave environment and to avoid over-
collection is to take drill cores of speleothems rather 
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than removing entire formations. Whittaker (2006, 
in: Frappier, 2008) reported a study in which only one 
tenth of the stalagmites sampled in caves from New 
Zealand using basal coring were found to be useful 
for palaeoenvironmental research. The purpose of 
this communication is to inform on some technical 
aspects of how to efficiently take drill cores from 
speleothems which might assist other researchers to 
minimize the impact of their sampling on the cave 
environment.

PREVIOUS WORK
Scientific drilling of speleothems has been used 

by several groups in the past, but to our knowledge 
technical details have not been reported. Rock coring 
is a commonplace technique in areas of geoscience 
such as palaeomagnetism where drills are normally 
powered by petrol engines. Calcite is a soft material 
and coring can be carried out successfully using low 
powered electric drills. Most authors appear to have 
used commercially available gear powered by either 
batteries or mains supply (in some show caves). Rock 
coring requires continuous flushing of the borehole 
with water, but again, documentation on these 
procedures is scarce, particularly regarding working 
in cave environments.

A number of researchers employed coring in 
order to study flowstone (e.g., Hellstrom et al., 
1998; Meyer et al., 2008; Siklósy et al., 2009) and 
obtained continuous cores - typically 2-3 cm in 
diameter - perpendicular to the growth stratigraphy. 
Others aimed at larger diameter cores and employed 
rather bulky gear attached to the surface of the 
formation using anchor bolts (e.g., Frisia et al., 
1993; Häuselmann, 2002). Stalagmites have also 
been drilled, in particular those ones too large to be 
removed entirely. Brook et al. (2006) cored a large 
column in Carlsbad Cavern (New Mexico) horizontally 
and obtained a 2.8 m-long core. Verheyden et al. 
(2006) obtained a 2 m-long core from a tall stalagmite 
of the Han-sur-Lesse cave in Belgium which covers 
the last 1800 years. Yang et al. (2007) cored two large 
stalagmites from a cave on the Tibetan Plateau 
vertically and retrieved 30 mm-diameter cores 
of the topmost 30 and 14 cm, respectively, for a 
detailed study of the last 50 years. An innovative 
approach was used by Dorale et al. (1992) who 
removed a small stalagmite from Cold Water 
Cave (Iowa), cored it from the bottom up (2.5 
cm diameter) and restored it afterwards to its 
original position to preserve the ornamentation 
of the cave. Coring was also performed in rather 
difficult conditions: Winograd and his team 
obtained drill cores from phreatic calcite by 
SCUBA diving in the Devils Hole vein (Nevada) 
(Winograd et al., 1988, 1992). 

This report describes some of the equipment, 
techniques and options for drilling cores and 
minimizing environmental impact on cave 
environments during speleothem sampling for 
palaeoclimate studies, based on experience 
gained at Innsbruck, and at Royal Holloway in 
conjunction with the Gibraltar Cave Science Unit 
(RH-GCSU).

DESCRIPTION OF THE DRILLING GEAR
Drills

The Innsbruck setup consists of two types of drill-
core bits, those for obtaining 25 mm-diameter cores 
up to 1.3 m in length and smaller ones designed for 
extracting cores up to 8 cm in length and 6-7 mm 
in diameter. Both types consist of a metal tube with 
a diamond-coated core bit and a water-flushing unit 
(see below). Both types of drill-core bits are used in 
connection with hand-operated, Li-battery-powered 
drilling machines. We currently use a Hilti TE-6A 
36V machine with 3.0 Ah Li-ion batteries to drive the 
larger diameter drill-core bits. For the small-diameter 
drill-core bits we use a light-weight battery drill (Hilti 
SF 144-A CPC 14.4 V). Because of their much smaller 
diameter, these bits are directly connected to the 
drilling machine using its boring socket.

The systems used by RH-GCSU use battery pow-
ered drills, either a consumer grade Makita 36V Li-
ion powered drill, or a Bosch Ni-Cd powered hammer-
drill, previously used by GCSU for fixing rock bolts. If 
a hammer drill is used for diamond coring, extreme 
caution must be taken not to engage the hammer ac-
tion otherwise the bit and water-swivel will be quickly 
and severely damaged.

Water flushing
A flow of water is used during coring to flush 

cuttings from the hole which greatly improves the 
speed of cutting, the quality of core retrieval and the 
longevity of the drill-core bit. Water is introduced 
to the centre of the core bit through a water swivel 
adaptor, and flows between the core and the drill-core 
bit, past the cutting surface and exiting into the cave 
carrying fine grained debris from the cutting process. 
Water can be supplied under pressure or by gravity 
feed. The Innsbruck system utilizes small inexpensive 
water containers pressurised by pump action that are 
sold in garden shops with a custom-made adapter to 
connect the tubing which provides pressurized water 
(Fig. 1). The water supply is operated by a second 
person (requires periodic pumping to maintain a 
moderate pressure in the vessel) who assists the 

Fig. 1. Selection of 25 mm diameter drill-core bits (up to 1.3 m in length) 
used to core flowstone and tall stalagmites together with the drilling 
machine and the water supply system. On the second smallest drill-core 
bit the SDS adapter and the water flushing system were removed.
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drilling person and makes sure that the borehole is 
sufficiently flushed during drilling.

The system used by RH-GCSU is a commercial 
water swivel adaptor obtained from UKAM Industri-
al Tools, USA (http://www.ukam.com/water_swiv-
el_adopters.html) but similar fittings are also avail-
able in the UK from Applied Diamond (Products) 
Ltd. (http://www.applieddiamond.com/). Water is 
supplied by gravity feed from flexible soft polythene 
containers that can be filled in the cave, emptied and 
packed away for transport in and out of the cave. The 
water container can be placed higher on rocks above 
the drilling site or held aloft by an assistant (Fig. 2).

The amount of water needed for a drilling 
operation need not be great with no more than a few 
litres required to cut a 50 cm core. The waste effluent 
produced by cutting is a milky water that may stain 
rock surfaces or contaminate pools, and additional 
water may be required for cleaning off these deposits 
(see below).

Drill-core bits
The larger diameter bits used in the Innsbruck 

system consist of an steel tube (outer diameter 29.0 
mm, inner diameter 25 mm) chrome-plated on the 
outside in order to prevent corrosion and minimize 
friction. The upper end of the tube contains the coring 
bit made of a bronze alloy with embedded diamonds 
(produced by E. Friedl & Co, Vienna, Austria, www.
diafriedl.at). The alloy is optimized for drilling of 
carbonates, i.e. rather soft rock. Our experience 
shows that slotted crowns are more efficient for 
coring (soft) carbonate material than unslotted 
crowns because of faster cutting and greater water 
flow. Slotter crowns, however, are more fragile and 
can be damaged by sideways impact. The lower end 
of the tube is connected to a Special Direct System 
(SDS) adapter via a screw thread (Fig. 3). This allows 
to unscrew the adapter and to open the tube from 
the back, which is important in case a core piece gets 
stuck and needs to be pushed out of the tube from 
behind. Given the fact that the drilling process will 
tighten the thread it can be quite difficult to unscrew 
the adapter. A hexagonal head is therefore welded 
to the SDS connection allowing the user to apply a 
wrench to unfasten the adapter (Fig. 3). The lower 

Fig. 2. Drilling into a broken stalagmite in Crystal Cave, Gibraltar 
using a gravity-feed water supply fed from a medical grade 
polythene bag to a UKAM water swivel and 38 mm diameter 
diamond coring bit powered by a Makita 36V Li-ion cordless drill.

Fig. 3. Detail of Innsbruck water flushing system. Top panel – 
dissembled system consisting of the perforated chrome-plated 
cylinder (A), SDS connector (B), the swivel with two radial shaft 
seals and the connector to the tubing (C), and the two rings which 
hold (C) in place. Lower panel – assembled system. 
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part of the tube is perforated to permit flushing water 
to enter the interior of the tube. In order to provide 
continuous water supply during the drilling process 
an aluminum swivel sits above the perforated part 
held in place by two rings fixed to the tube by screws. 
Two radial shaft seals provide a water-tight connection 
between the swivel and the rotating drilling tube (Fig. 
3). It is important that these seals are not too tight to 
cause friction. 

The second type of drill-core bit is much smaller, 
and ranges from 5.6 to 6.9 mm inner diameter (7.6 to 
8.5 mm outer diameter – Fig. 4). The steel tube is also 
chrome-plated and the upper end of the tube contains 
the diamond core bit. The lower end is closed by a 
(headless) screw made of brass to prevent rusting. 
This again allows cleaning of the tube from behind 
in case core pieces get stuck. The water flushing unit 
has a similar design to the one described for the 25 
mm-drill-core bits but is significantly smaller in size 
(Fig. 4).

The drill-core bits used by RH-GCSU are 38 mm 
diameter and 500 mm long (produced by Applied 
Diamond (Products) Ltd., UK, http://www.applieddia-
mond.com/) and are attached to the water swivel by a 
½” British Standard Pipe (BSP) screw thread. This can 
also be difficult to remove after use in the field and ap-
propriate tools are needed to change bits.

DISCUSSION
Drilling and battery life

The small-diameter drilling bits have proven very 
useful to sample in-situ stalagmites up to 14 cm in 
diameter. Using drill-core bits smaller than ca. 6 mm 
leads to poor recovery as the material tends to break 
or even disintegrate during the coring process. We 
commonly drill horizontally close to the stalagmite’s 
base and use the innermost core piece (halfway into 
the stalagmite) to obtain a reconnaissance date of 
the onset of stalagmite growth (Fig. 5). Even with low 
U contents in the 0.05-0.1 ppm range modern MC-
ICP-MS instruments are capable of determining a 

reasonably precise U-Th date from as little as a few 
tens of milligram and e.g. a 5.6 mm-diameter core 
piece only 3 mm in length weighs already about 200 
mg. Drilling takes a few minutes only and one 2.6 Ah 
Li-ion battery lasts for several boreholes 7 cm deep. 

The larger 25 to 38 mm bits are mostly used for 
coring flowstone but also tall in-situ stalagmites. Care 
must be taken at the beginning of the coring process 
when the guiding in the borehole is not yet sufficient 
so that even a slight twisting can lead to the breakage 
of the core. The longer the drilling bit to start with 
the more difficult it is to keep it straight. We therefore 
recommend drill-core bits of continuously increasing 
lengths which are exchanged as soon as the previous 
bit reached the maximum drilling depth (Fig. 1). The 
SDS connection proved essential to guarantee smooth, 
vibration-poor, concentric drilling. If the borehole is 
well flushed drilling a shallow borehole consumes 
about the same energy as a e.g. 1 m deep one. A Hilti 
3.0 Ah Li-ion battery typically lasts for ca. 30-40 cm, 
i.e. about four batteries are needed to complete a 1.3 
m-deep hole. This takes roughly one hour of drilling. 
Drilling progress obviously varies depending on the 
density of the material. 

Experience with the consumer grade cordless 
drills such as the Makita 36V unit used by the RH-
GCSU group have been less positive as the Li-ion 
batteries in these units are electronically protected 
from overheating, and have been known to shut down 
after prolonged high current draw while drilling cores 
in a cave. Some care may be needed in selecting drill 
units for coring powered by Li-ion batteries, but the 
types designed for heavy-duty use are an excellent 
choice on account of their lower weight, higher power 
density and low charge loss. Ni-Cd batteries, however, 
remain a good alternative since they are rugged, have 
no controlling electronics and provide high current 
outputs without overheating. They are heavier and 
less convenient but otherwise yield high power and 
excellent performance in continuous use. Lead-acid 
batteries are not suitable not only because of weight 
and bulk, but they are not designed for deep discharge 
cycles and are damaged when run completely flat.

Fig. 4. Two small-diameter drilling bits (cm-scale) used to obtain 
cores samples (5.6-6.9 mm diameter) for reconnaissance dating 
of in-situ stalagmites. 

Fig. 5. A light-weight battery-powered drill is used in conjunction 
with a water-flushed drill to obtain small cores from the inner part of 
stalagmites for a rapid screening a large number of speleothems.
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Core recovery
The length of core that can be recovered from 

drilling speleothem deposits will obviously depend on 
natural weaknesses but many forms of speleothem 
calcite, flowstone especially, are extremely tough and 
individual core segments ranging between 20 and 40 
cm in length can be routinely recovered. Unless the core 
fractures during drilling, a tool is needed to break the 
core at the base of the borehole at the end of the drilling 
process. This can be a long, flat tipped screwdriver or 
the Innsbruck system uses thin metal rods of different 
lengths with a chisel-like flat tip and little force is usually 
required to break the core loose (Fig. 6). The core can be 
recovered in a variety of ways – the Innsbruck system 
uses another metal rod (e.g. welding rods) thin enough 
to slide between the core and the borehole and equipped 
with a bent tip used to fetch the core at its base and 
retrieve it from the borehole (Fig. 6). Another solution are 
long barbeque tongs made of thin metal with cylindrical 
tips, and another is a thin-walled aluminium tube with 
a slit cut along its length that can be squeezed around 
the core to grip it.

Drilling success not only depends on the drilling 
gear, the efficiency of flushing and the ability to 
keep straight during the first ca. 10-15 cm, but also 
on the material properties of the speleothem. There 
is no general rule, but porous and very coarsely 
crystalline or sparry calcite tends to be susceptible to 
disintegration during drilling and core recovery can be 
poor. Use of larger diameter drill-core bits (e.g. 50 mm 
diameter) may be an advantage coring brittle samples 
but tougher compact calcite allows continuous cores 
of 30-40 cm in length to be cut using drill diameters 
described above. It is advisable to immediately stop 
the drilling as soon as the core breaks (which can 
be noticed with some experience by a subtle change 
in the behavior or sound of the drill-core bit) and to 
remove the core; otherwise individual core segments 
can rotate against each other inside the drill tube 
resulting in further fragmentation and loss of material 
at the core breaks. 

Environmental impacts
The drill holes can be filled and patched using 

cave loam or, more professionally, using e.g. epoxy 
resin or a mixture of a small quantity of Portland 
cement and crushed core material or cave sediment, 
to restore the appearance and color of the stalagmite 
or flowstone surface (Fig. 7). Within a short time, 
especially in areas of active calcite deposition there 
is usually little evidence of the core ever having been 
taken. Another consideration is the milky stream 
of suspended carbonate particles produced by the 
flushing process which will stain the cave floor and 
contaminate flowstone and cave pools. This can 
often be washed away and we had good experience 
with damming this fluid using towels and carefully 
cleaning the workplace after coring.
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Fig. 6. Schematic drawing of the sequence of breaking and 
retrieving a core. A and B: core is broken near its base using a flat-
tipped tool. Some cores break already by gently pushing the rod 
into the void between the core and the wall of the borehole, others 
may require a hit by a small hammer. C: Removal of the core using 
a thin rod with a bent end.

Fig. 7. Example of a speleothem cored by two drillings (top panel) 
and subsequent to patching the holes (lower panel). Width of 
images ca. 1.5 m.
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