Speleothems and mountain uplift

Michael C. Meyer, Robert A. Cliff and Christoph Spötl

Geology 2011;39;447-450
doi: 10.1130/G31881.1

Email alerting services click www.gsapubs.org/cgi/alerts to receive free e-mail alerts when new articles cite this article

Subscribe click www.gsapubs.org/subscriptions/ to subscribe to Geology

Permission request click http://www.geosociety.org/pubs/copyrt.htm#gsa to contact GSA

Copyright not claimed on content prepared wholly by U.S. government employees within scope of their employment. Individual scientists are hereby granted permission, without fees or further requests to GSA, to use a single figure, a single table, and/or a brief paragraph of text in subsequent works and to make unlimited copies of items in GSA’s journals for noncommercial use in classrooms to further education and science. This file may not be posted to any Web site, but authors may post the abstracts only of their articles on their own or their organization’s Web site providing the posting includes a reference to the article’s full citation. GSA provides this and other forums for the presentation of diverse opinions and positions by scientists worldwide, regardless of their race, citizenship, gender, religion, or political viewpoint. Opinions presented in this publication do not reflect official positions of the Society.

Notes
Speleothems and mountain uplift

Michael C. Meyer1*, Robert A. Cliff2, and Christoph Spötl1
1Institut für Geologie und Paläontologie, Universität Innsbruck, Innrain 52, 6020 Innsbruck, Austria
2School of Earth and Environment, University of Leeds, Leeds, LS2 9JT, UK.

ABSTRACT

Ancient speleothems were recovered from caves that today are situated in a high-alpine cirque landscape at 2500 m altitude at the northern rim of the European Alps. U-Pb ages date speleothem deposition to the early Quaternary (between 2.16 and 2.12 Ma and ca. 2.00 Ma), i.e., well before the onset of major alpine and Northern Hemisphere glaciations. Using a stable isotope-based modeling approach, we quantitatively estimate the paleoelevation of both the caves and their former catchment area, which in turn allows us to calculate rates of rock and surface uplift (and hence erosion) since 2 Ma. We show that for the frontal part of the Alps, rates of rock uplift and erosion were ~0.75 and ~0.5 mm/yr, respectively, and further suggest that isostatic uplift of mountain peaks of as much as ~500 m in response to enhanced glacial erosion occurred during the Quaternary. This study highlights the potential of U-Pb-dated speleothems for reconstructing paleoaltimetry, particularly in calcareous mountain ranges, where a standard thermochronologic assessment of exhumation and erosion is generally not feasible.

INTRODUCTION

The effect and relative importance of climate and climate change for the evolution of mountain ranges are subjects of ongoing and intense debate (e.g., Kohn, 2007; Whipple, 2009; Egholm et al., 2009). While horizontal shortening of tectonic plates thickens the buoyant crust and elevates the Earth's surface, erosion of such tectonically accreted belts produces relief and triggers isostatic rebound until equilibrium is reached (Whipple, 2009; Tomkin and Roe, 2007). Late Cenozoic climate deterioration and in particular the marked climate variability during the Quaternary significantly enhanced erosional unloading (Peizhen et al., 2001), with profound consequences for the morphotectonic evolution of many active orogens (Berger et al., 2008; Champagnac et al., 2007). Hence, reliable estimates of the interrelated processes of rock uplift, surface uplift, and erosion are highly desirable but difficult to obtain for the Quaternary and often remain poorly constrained (England and Molnar, 1990), especially for calcareous mountain ranges where standard thermochronological techniques are usually not applicable.

U-Pb dating opens up new vistas for paleoenvironmental research, as no upper dating limit is encountered with this radiometric technique, but has been successfully applied to only a handful of speleothems. Here we present data for 2-m.y.-old speleothems dated via the U-Pb isochron technique, which were recovered from fossil caves in the Allgäu Mountains, a segment of the Northern Calcareous Alps in western Austria (Fig. 1). Substantial shortening during the Cretaceous–Tertiary alpine orogeny resulted in a fold-and-thrust belt characterized by southeast–dipping thrust sheets and associated northeast–west–vergent folds (Fig. 1B). As a result, the dolomite host rock reveals steeply dipping bedding planes and axial plane foliation as well as sets of conjugate fractures and faults (Fig. 1C). Intensive glacial erosion during the Quaternary is evidenced by a distinctive cirque landscape (mean peak elevation of ~2500 m), as well as main valleys with U-shaped cross profiles. Due to the position at the northern rim of the Alps, the Allgäu Mountains are directly exposed to the northwesterlies and receive as much as 2500 mm of mean annual precipitation, making this Northern Calcareous Alps segment one of the wettest places both north of the Alps and of the entire orogen (Frei and Schär, 1998). Two caves are located at ~2450 m in cirque walls of the Allgäu main crest (Fig. 1B) and host speleothems with high U contents (4–43 ppm) coupled with low nonradiogenic Pb levels, i.e., ideal candidates for the U-Pb isochron technique (Richards et al., 1998). The petrographic and isotopic characteristics of these samples call for environmental and climatic conditions during speleothem formation vastly different from those of today, and are discussed in the following.

RESULTS

Brownish stalagmites and flowstone samples, some in situ, were recovered from the caves; flowstone data were discussed by Meyer et al. (2009). Here we focus on a 36-cm-long candle-shaped stalagmite from the Wilder Mann cave (sample WM5). Four U-Pb ages were determined; these decrease in stratigraphic order from 2.16 ±0.02/−0.07 Ma to 2.00 ±0.02/−0.07 Ma (2σ errors; details on the U and Pb isotopic data errors; details on the U and Pb isotopic data

*E-mail: michael.meyer@uibk.ac.at.
are given in the GSA Data Repository1). Stalagmite WM5 is characterized by a regular macroscopic lamination and preserves microscopic ultraviolet (UV) fluorescent laminae (~30–70 μm) similar to the UV lamination in the adjacent 2 Ma WM1 flowstone (Meyer et al., 2009), although much fainter. At 60 mm below the top the stalagmite reveals a hiatus. A low-amplitude, low-frequency O isotopic signal was obtained for a 30-cm-long sequence between the hiatus and the base of the stalagmite (i.e., growth period 1, δ18O mean ~11.8‰, δ18O minima ~12.5‰; Fig. 2). This growth period reveals long-term trends in δ18O, whereas the δ13C values stay almost invariant (~4‰). We checked the WM5 record for isotopic equilibrium conditions via a series of Hendy tests performed along both the stalagmite growth axis and single layers. No δ18O/δ13C covariance was found for growth period 1 (Δδ13C/Δδ18O slope = 0.12, r² = 0.03), whereas simultaneous enrichment of δ18O and δ13C during growth period 2 (Δδ13C/Δδ18O slope = 1.20, r² = 0.34) is indicative of kinetic isotope fractionation (Hendy, 1971; Mickler et al., 2006; Fig. 2). The Hendy tests for growth period 1, however, suggest that δ13C in cave calcite (δ13Ccalcite) reflects the O isotopic composition of the former cave drip water, and thus the meteoric precipitation that fell above the cave (δ18Ocalcite; lamina-parallel Hendy tests in Figure DR2 in the Data Repository). The δ13C values in growth period 1 are high and, analogous to modern caves in alpine settings, suggest a small contribution of soil-derived C and a thick rock overburden. The continuous microscopic UV lamination indicates the presence of some soil and vegetation in the infiltration area above the cave, giving rise to a flux of fluorescent organic matter into the karst aquifer during late summer and autumn, when decaying organic material is readily available (Frisia et al., 2003).

ISOTOPIC MODELING

Isotopic equilibrium conditions in growth period 1 of stalagmite WM5 are associated with δ13Ccalcite values of ~12‰ to ~12.5‰, and similar findings apply to the adjacent WM1 flowstone (U-Pb dated to 2.02 ±0.04/–0.07 Ma), where isotopic equilibrium conditions are manifest by δ18Ocalcite values of ~12‰ (Meyer et al., 2009). These values are surprisingly low, i.e., 3‰–4‰ lower than of Holocene speleothems in similar settings (i.e., north alpine caves with catchments between 1500 and 2000 m; Spotl’s unpublished data). We also calculated a theoretical δ18Ocalcite value for the modern altitude setting of the Allgäu caves. Under isotopic equilibrium δ18Ocalcite is a function of δ18Oprecip and the cave temperature (Tc), which in turn reflects the mean annual air temperature (MAAT) outside the cave (Wigley and Brown, 1976). Modern δ18Oppt and Tc values were obtained via extrapolating data from nearby meteorological stations (Table 1; Fig. DR3) and a theoretical δ18Ocalcite value of close to ~10‰ was obtained. Note that calcite does not form under these conditions today (MAAT <0 °C; Table 1) and that modern drip water is undersaturated with calcite, and hence corrodes speleothems. In order to explain the unusually low δ18Ocalcite values, changes in paleoelevation and climate have to be invoked and are quantified using a simple isotopic model. The model is based on linear calibrations of the local lapse rates of Tc and δ18Ocalcite (Fig. DR3), whereby calcite precipitation is treated as an equilibrium process. Because the O isotopic fractionation between calcite and water is temperature dependent (~0.2‰/°C; Friedman and O’Neil, 1977), the isotopic composition of speleothem calcite formed at lower elevation can be simulated by increasing Tc (via the T lapse rate). The paleoelevation of the infiltration area is varied via the isotopic lapse rate. A range of possible uplift and erosion scenarios is considered by assuming different paleoelevations for the cave and its corresponding catchment (Fig. 3; Table 1). The first set of calculations (scenarios A–D2) assumes that both lapse rate and climate 2 m.y. ago were broadly comparable to today. While scenarios C and D2 come close to the measured δ18Ocalcite values (δ18Ocalcite equilibrium field; Fig. 3),...
only scenario D1 intersects it; i.e., a combination of a deep-seated cave and an alpine infiltration area (i.e., ≥2000 m in altitude) is required to obtain δ¹⁸O values that approach the measured calcite values of −12‰ to −12.5‰. A thickness of 1000 m for the vadose zone (scenarios C and D2) is a high value but not uncommon in the Alps (Bauer, 1969), and we suggest that the structural predisposition of the host rock (Fig. 1) allows for efficient transmission of the hydrological surface signal into the underground and that the model of a deep-seated cave can therefore be reconciled with the presence of seasonal karst water pulses to reach the cave). However, a rock overburden of 1500 m, as suggested in scenario D1, appears unrealistically thick and is rarely observed in alpine cave settings today and would probably cause the organic surface signal (responsible for precipitating fluorescent calcite bands during late summer–autumn) to be eliminated by dispersion and mixing en route through such a very thick unsaturated zone (Frisia et al., 2003). Scenario D1 is therefore deemed improbable. Furthermore, the studied speleothems are vadose features and cannot form below the groundwater table, which is at 800–1100 m today; we therefore discard scenario A (cave at 500 m above sea level).

We also investigated the impact of climate-induced temperature changes on δ¹⁸O (in addition to temperature changes associated with different paleoelevations of the cave) by exploiting the well-established modern relationship between T and δ¹⁸O in Central Europe (0.59‰ ± 0.08‰/°C; Rozanski et al., 1992). Cooler climatic conditions during calcite precipitation therefore translate into more negative δ¹⁸O values, and we superimpose this effect on the previously accepted scenarios (B, C, and D2; Fig. 4A). Substantial atmospheric cooling is necessary to meet the isotopic constraints of the Allgäu speleothems (e.g., to 6 °C for scenario B), but at the same time the MAAT in the infiltration area plunges below the freezing point (Fig. 4A). This would inevitably initiate periglacial processes and glaciation in the catchment, in stark contrast to the calcite petrography (i.e., the regular UV lamination, the lack of corrosion features and detrital material) and the pollen content from a 2 m.y. old flowstone sample from the same cave (Meyer et al., 2009), all indicating a vegetated and geomorphologically stable infiltration area. Note that scenarios with catchments higher than today (i.e., ≥2500 m) also result in glacial and periglacial conditions (even without cooling), a strong argument against Northern Calcareous Alps paleoelevations ≥2500 m 2 m.y. ago. Other mechanisms that could account for the low δ¹⁸O values include (1) the amount effect (i.e., partial reevaporation of raindrops falling through dry air), and (2) the possibility that the air masses that delivered moisture to the Northern Calcareous Alps 2 m.y. ago followed very different trajectories compared to today. The amount effect has not been observed in the Alps (despite a dense network of measurement stations), and there is no evidence to suggest a fundamentally different moisture delivery pattern from the Atlantic to the Alps than that of today (Bartoli et al., 2005; Lisiecki and Raymo, 2005). We therefore argue that a more viable mechanism to reconcile the measured δ¹⁸O values with our most plausible uplift scenarios (C and D2) is seasonal changes in precipitation. The importance of seasonality changes has been demonstrated previously for the Pliocene-Pleistocene transition (Klotz et al., 2006), as well as for late Pleistocene speleothems in the Alps (Meyer et al., 2008), and is exemplified in Figure 4B. Increasing the isotopically light winter precipitation (e.g., in scenario C) by 30% in combination with slightly dryer summers and an atmospheric cooling of 1–2 °C decreases the δ¹⁸O value by ~1‰ and the δ¹⁸O equilibrium constraints are met (stronger seasonality changes are required for scenario D2 while no intersection with the δ¹⁸O equilibrium field was achieved for scenario B; Fig. DR4). We favor scenario C over scenario D2, considering the proximity to the glaciation threshold of the latter scenario and the consequent type and magnitude of seasonality changes required to approach the equilibrium δ¹⁸O values of the WM5 stalagmite.

DISCUSSION AND CONCLUSIONS

The isotopic modeling results are robust and not affected by kinetic isotope fractionation effects that undoubtedly played a role during growth period 2 of stalagmite WM5. The basic assumption in our model is that the temperature lapse rate as well as the isotope lapse rate 2 m.y. ago (and thus upward rainout patterns; Galewsky, 2009) were broadly comparable to today. This view is supported by paleo-environmental data suggesting that interglacialists during the early Quaternary were constrained by roughly the same climatic boundary conditions as during the Holocene (Bartoli et al., 2005; Lisiecki and Raymo, 2005; Klotz et al., 2006).

The isotope model suggests an alpine infiltration area (2000–2500 m), a deep-seated cave (~1000-m-thick vadose zone), and a seasonality pattern slightly different from those of today. These results are corroborated by (1) palynological data from the adjacent WM1 flowstone, where pollen point toward an alpine infiltration area with only local tree stands, cool-humid summers, and mild winters (Meyer et al., 2009), and (2) the high δ¹⁸O values of the WM5 stalagmite (requiring a thick rock overburden and a thin soil cover). Rock uplift rates of 0.5 and 0.75 mm/yr are derived from scenarios C and D2, respectively. Both scenarios suggest erosion rates of 0.5 mm/yr. However, 500 m of surface uplift (at a rate of 0.25 mm/yr) is associated with scenario C, whereas surface uplift is balanced by erosion in scenario D2. Considering the position at the northern rim of the Eastern Alps, both rock uplift and erosion rates are high and only comparable in magnitude to rates derived from fission track and sediment budget data closer to the core of the orogen (Kuhlemann et al., 2002; Rahn, 2001).

The past 2 m.y. (i.e., the integration interval for our isotope model) were dominated by glacial valley incision and relief production in many mountain ranges (e.g., Shuster et al., 2005), including the Alps (Häuselmann et al., 2007). Glacial erosion is known to entail isostatic uplift of mountain peaks (Whipple et al., 1999), and we therefore attribute the surface uplift in scenario C to isostatic compensation in response to enhanced glacial unloading during the Quaternary. The alternative mechanism, i.e., uplift of mountain peaks in response to enhanced crustal shortening, is unsubstantiated given the fact that the convergence in the European Alps has declined since the Late Miocene (e.g., Schmid et al., 1996), while alpine erosion rates have increased significantly since ca. 3 Ma (Kuhlemann et al., 2002). Furthermore, analytical models that examine the coupling between glacial erosion and orogen development suggest that erosion and hence rock uplift rates not only are linked to the distribution of precipitation, but relate linearly to the precipitation rate and...
are highest at the edges of a glaciated moun-
tain range (Tomkin and Roe, 2007). This view is consistent with our isotopic modeling results and with meteorological (Frei and Schär, 1998) and paleoglacial data (Fiebig et al., 2004) from the Alps. Quaternary landscape evolution at steady state (Egholm et al., 2007) follows from scenario D2 (rock uplift equals erosion), while isotopic peak uplift of ~500 m, probably in response to enhanced glacial erosion, is suggested by scenario C (our favored scenario, as outlined herein). Scenario C is therefore in line with geophysical modeling results from the Western Alps suggesting that Quaternary erosion-induced isotatic rebound was ~500 m (Champagnac et al., 2007).

While thermochronological techniques have been used to study the crystalline core of the alpine orogen, the morphotectonic evolution of its sedimentary peripheral segments has hitherto been much more difficult to constrain. The rims of this orogen are characterized by focused precipitation and erosion, and we pinpointed significant rates for rock uplift and erosion for the Quaternary in one of the northernmost mountain segments. Our study highlights the potential for constraining paleotopography and mountain belt evolution using ancient U-Pb-dated speleothems.

ACKNOWLEDGMENTS
This research was funded by the Austrian Science Fund grant Y122-GEO to Spötl. Geochronological facilities were supported by the University of Leeds and Natural Environment Research Council grant NER/H/S/2000/00853. Meyer was funded by the Seventh Framework Programme of the European Union (grant FP6-GEOPAL-210944) during the writing stage. We thank H. Ortner and B. Fügenschuh for discussion and references for the helpful comments.

REFERENCES CITED
Kuhlenkampf, J., Frisch, W., Scharfenberg, J., and Fischer, L., 2008, Quaternary tec-
Frei, C., and Schär, C., 1998, A precipitation climate-
alps from high-resolution rain-
Friedman, I., and O’Neill, J.R., 1977, Compilation of stable isotope fractionation factors of ge-}

isotopic composition of speleothems and their appli-
cability as palaeoclimatic indicators: Geo-
Klotz, S., Faquette, S., Combrouie-Nebout, N., Uhl, D., Suc, J.P., and Mosbrugger, V., 2006, Seasonality intensification and long-term winter erosion as a part of the late Pleistocene cli-
Kuhlenkampf, J., Frisch, W., Scharfenberg, J., and Fischer, L., 2008, Quaternary tec-
Frei, C., and Schär, C., 1998, A precipitation clima-
Friedman, I., and O’Neill, J.R., 1977, Compilation of stable isotope fractionation factors of geo-